Additions and Corrections

Heavy-Atom Kinetic Isotope Effects and Mechanism of the Acid-Catalyzed o-Semidine and p-Semidine Rearrangements and Disproportionation of 4,4'-Dichlorohydrazobenzene [J. Am. Chem. Soc. 1986, 108, 1000-1006]. Eun-Sook Rhee and Henry J. SHine*

Errors were made in calculations of some of the carbon KIE. The errors arose in the treatment of "del" data from measurements of ${ }^{13} \mathrm{C} /{ }^{12} \mathrm{C}$ ratios by isotope-ratio mass spectrometry, and with ${ }^{13} \mathrm{C}$ and ${ }^{14} \mathrm{C}$ data in rearrangements in which intra- and intermolecular competition took place. Details of the correct calculations are reported elsewhere, ${ }^{1}$ and have given corrections for Tables II, III, IV, and VI of the publication.

Corrections for Table II, column V, entries 6-13: 0.9992, $1.0088,1.0000 \pm 0.0034,0.9912 \pm 0.0040,0.9932 \pm 0.0048$, $1.0076 \pm 0.0065,1.0012 \pm 0.0072$, and 0.9948 ± 0.0107.

Corrections for Table III, column V, entries 8-10: $0.9913 \pm$ $0.0039,1.0117 \pm 0.0114,0.9936 \pm 0.0126$.

Corrections for Table IV, column V, entries 9-13: 0.9878 , $0.9989,1.0117 \pm 0.0040,0.9962 \pm 0.0040,1.0008 \pm 0.0050$. Carbon KIE were summarized in Table VI, the corrected version of which is given here.
Table VI

	KIE and basis		
reaction	$2-{ }^{14} \mathrm{C}$	$4-{ }^{14} \mathrm{C}$	$4,4^{\prime}-{ }^{13} \mathrm{C}_{2}$
disproportion- \quad ation	1.0012 ± 0.0081	0.9948 ± 0.0040	1.0040 ± 0.0048
o-semidine rearr p-semidine rearr	0.9989 ± 0.0093	1.0027 ± 0.0042	0.9993 ± 0.0009

Corrections should be made also in the text, p 1004, column 1: line 33 , (0.9997) should read (0.9989); line 39 , (0.9997) should read (0.9989); line 60 , (1.0014) should read (1.0029); line 63, (0.9970) should read (0.9934).

These calculations do not affect the body of the work and the conclusions. On p 1002, column 2, line 16 , the name p-anisidine should read p-semidine.

There is an error in one of the structures in Scheme I (p 1000), in which a double bond appears between the nitrogen atoms of 4,4'-diiodohydrazobenzene.
(1) Rhee, Eun Sook Jang Ph.D. Dissertation, Texas Tech University, May, 1986.

Inter- and Intramolecular Insertion of Rhenium into CarbonHydrogen Bonds [J. Am. Chem. Soc. 1986, 108, 4856]. Timothy T. Wenzel and Robert G. Bergman*

Page 4862: The following corrections should be made in Table V. The z coordinate was incorrectly labeled " x ", the $\operatorname{Re} 2 y$ coordinate should be changed to 0.08087 (2), and the $\mathrm{H}(\mathrm{Re} 2)$ B value should be changed to 4.0 . Also, the signs should be
reversed (+ to - or - to + , as appropriate) for the following coordinates- x : $\mathrm{P} 3, \mathrm{C} 1, \mathrm{C} 12, \mathrm{C} 17, y: \mathrm{P} 2, \mathrm{C} 6, z: \mathrm{C} 22$.

Biosynthesis of the Kinamycin Antibiotics by Streptomyces mu-

 rayamaensis. Determination of the Origin of Carbon, Hydrogen, and Oxygen Atoms by ${ }^{13} \mathrm{C}$ NMR Spectroscopy [J. Am. Chem. Soc. 1986, 108, 4625-4631]. Yukiharu Sato and Steven J. Gould* Page 4629, column 1, last paragraph:Altersolanol $\mathrm{A},{ }^{38}$ 22, also contains a tetrahydroxymethylcyclohexene ring, although with a different stereochemistry. Altersolanol $\mathrm{B},{ }^{38}{ }^{23}$, lacks the $\mathrm{C}-1$ and $\mathrm{C}-4$ hydroxy groups; its structure was confirmed by a correlation ${ }^{39}$ with bostrycin. ${ }^{40}$ A revision of the stereochemistry and tautomerization of the latter compound, based on a total synthesis, ${ }^{41}$ provided the corrected structure 24.

24
Page 4629, reference 43:
It was indicated ${ }^{42}$ that $\left[{ }^{13} \mathrm{C}\right]-22$ was incorporated into the related anthraquinone macrosporin where the C -ring has been aromatized with retention of hydroxyl only at C-3, and the overall pathway from an octaketide precursor is unusual.

Intramolecular Carbonyl Oxide-Ester Cycloaddition. Structure of a Novel Alkoxy Ozonide [J. Am. Chem. Soc. 1987, 109, 612-613]. William H. Bunnelle* and Elmer O. Schlemper

We have recently become aware of an observation ${ }^{1}$ of the intramolecular carbonyl oxide-ester cycloaddition which predates our report. We regret this oversight.
(1) Odinokov, V. N.; Kukovinets, O. S.; Khalilov, L. M.; Tolstikov, G. A.; Kosnikov, A. Y.; Lindeman, S. V.; Struchkov, Y. T. Tetrahedron Lett. 1985, 26, 5843.

Solvent and Free-Radical Effects on the ${ }^{13} \mathrm{C}$ NMR Spectra of Hydrocarbons [J. Am. Chem. Soc. 1987, 109, 1332]. José Luis M. Abboud,* Abbdelouahad Auhmani, Hassane Bitar, Mohammed El Mouhtadi, Javier Martin, and Manuel Rico*

Page 1338: In the title of Table VI, $\delta_{\mathrm{S}, \mathrm{C}_{6} \mathrm{H}_{12}} \int_{\mathrm{C}_{6} \mathrm{H}_{6}}^{\mathrm{C}_{6}}$ is to be replaced by $\delta_{\mathrm{S}, \mathrm{C}_{6} \mathrm{H}_{6}} \int \mathrm{C}_{6} \mathrm{C}_{6} \mathrm{H}_{6}$

Page 1340: Equation 7 should read:

$$
\begin{equation*}
\left(\int_{\mathrm{C}_{6} \mathrm{H}_{6(\mathrm{arst}}}^{\mathrm{C}_{i}}\right)_{\mathrm{s}}=\left(\int_{\mathrm{C}_{6} \mathrm{H}_{6}}^{\mathrm{C}_{i}}\right)_{\mathrm{s}}+\Delta_{\mathrm{s}} \tag{7}
\end{equation*}
$$

The text remains unchanged.

